The Outlook of Broadband Optical Access Networks

Cedric F. Lam 林峯 Chief System Architect, OpVista Inc. 870 N. McCarthy Blvd, Milpitas, CA 95035, USA

+1 (408) 719-6127, cflam@ieee.org

Acknowledgement & Disclaimer

Acknowledgement

– Jessica Xin Jiang (Salira Networks)

Disclaimer

The materials presented here represents my own personal view which could be biased.

Telecommunication Networks

Broadband Access Network Drivers

Continuing growth of Internet and new applications

- Quadruple play:
 - VOIP, IPTV, Broadband Data, Wi-Fi /Wi-Max (backhauling)
- Storage Area Networks
- Peer-to-peer networking
 - Picture, movie & music sharing
- Network gaming

Deregulation of the telecom service market

 Telcos and MSOs get into each other's market

VoD – Killer Application **NETELIX** the Post-Office Model How It Works Create your list of We rush you DVDs $(\mathbf{1})$ DVDs online from your list Over 65.000 Free Delivery 4 ~ 8 GBytes per DVD Titles 24 to 48 hours 160 ~ 740kbits per second Return a viewed Keep each DVD as long 3 movie to get a new as you want one from your list No Late Fees EVER Prepaid Return Envelopes

FY 2006, Revenue : \$997mil, Net Income : \$49mil.

Source: www.netflix.com

Rapid Storage and Processing Improvements

Figure 1 HDD storage density is improving at 100 percent per year (currently over 100 Gbit/in2). The price of storage is decreasing rapidly and is now significantly cheaper than paper or film.

Figure 2 Improvement factors for PC technologies: since 1990 storage technology has outpaced both processor and communication technologies.

Morris and Truskowski, IBM Systems Journal, Vol. 42, (2), 2003.

Toshiba's 0.85" 4 GB HDD

Seagate's 1" 5 GB USB External HDD

Source: E. Ayanoglu, UCI

VoD Enablers

DRAM Based servers

Courtesy: Motorola (Broadbus)

- High capacity storage
- Advanced video processing and compression technologies
 - SDTV: ~ 3.5 Mpbs (MPEG-2)
 - HDTV: ~ 8-15 Mbps (MPEG-4)
- Low-cost and high-bandwidth made available by WDM and Gigabit Ethernet

VoD Penetration in the USA

Total number of households in the US: 116Millions

Source: Forrester Research, 2005

Global FTTX Development

Fiber to the Premises (FTTP)

- RBOCs' new weapon to compete with MSOs
- FCC incentive, no need to unbundle the link
- Joint RFP issued in January 2003
 - Verizon, SBC (now AT&T) and Bell South
 - Promote interoperability, create economy of scale
- AT&T: Uverse; Verizon: FIOS

NTT

- GE-PON based FTTH

Korea

- WE-PON (WDM-Ethernet-PON) trial

Europe

- Many carriers have selected G-PON for FTTx

US FTTH Deployment

Source: RVA Render

FTTH Homes Passesd (North America)

- Up to Sept 2007
 - 2.14mil homes connected
 - 9.5mil households passed

FTTH Homes Connected (North America)

- Growth rate:
 - 112% annually
 - 300,000 households passed every month

TDM vs. WDM

Power Splitting TDM PON Infrastructure

- Power splitter remote node
- Single fiber connection
- Upstream and downstream signals separated by wavelengths (1.3μm/1.49μm)
- Optional 1.55µm broadcast analog signal overlay

EPON vs. GPON

EPON Multi-Point Control (MPCP) Protocol

FCS

New MAC control messages

GATE	on-code = 02
	op code = 03
	op-code = 03
REGISTER_REQUEST	op-code = 04
REGISTER	op-code = 05
REGISTER_ACK	op-code = 06

Ref: IEEE 802.3ah

Bandwidth request and grant are achieved through MPCP protocol

- ONU request upstream BW through REPORT frames
- OLT send BW allocation to ONU using GATE frames
- Pros
 - Only standard 802.3 Ethernet MAC frames are used
 - Maximum compatibility with Ethernet
- Cons
 - Each MPCPDU is a 64-byte Ethernet MAC frame with its own overhead
 - OLT sent GATE frames individually addressed to each ONU for BW allocation

 $\Rightarrow\,$ Large protocol overhead, less efficient use of BW

GPON (GTC) Downstream Encapsulation

- Less overhead
 - Media Access Control (MAC) information for ALL ONUs piggybacked into the same frame.
- ITU-T G.984.3

Source: ITU-T G.984.3

GPON (GTC) Upstream Encapsulation

- Dynamic bandwidth report piggybacked to upstream encapsulation. No separate frames used.
- G-PON Encapsulation Mode (GEM)
 - Support Ethernet frame fragmentation
 - Support encapsulation of other formats
 - More efficient packing of data
 - Native support of TDM traffic

Source: ITU-T G.984.3

EPON vs GPON – Physical Layer

		EPON	GPON	
Downstream data	a rate (Mbps)	1000	1244 or 2488	
Upstream data ra	ate (Mbps)	1000	155, 622, 1244, or 2488	
Payload Encapsulation		Native Ethernet	GEM	
TDM Support		Circuit Emulation	Native	
Upstream burst mode receiver	Laser on/off	512ns	≈13ns	
	AGC	≤400ns	4400	
	CDR	≤400ns	44115	

GPON

- Power control required in GPON to achieve short AGC time
- High speed laser drivers required for fast on/off time in GPON, difficult to realize

EPON

- Relaxed component requirements (20~30% cheaper equipment)
- Can even use traditional AC-coupled receiver as EPON burst mode receiver

Fully loaded 32-way split

		EPON	GPON
Raw Bandwidth	Downstream	31.25	78
(Mbps)	Upstream	31.25	39 / 78
Bandwidth Ef	ficiency	72% 😴	92% 😂
Effective Bandwidth (Mbps)	Downstream	22.5	71.8
	Upstream	22.5	35.9 / 71.8

 US RBOCS don't think EPON meets their future bandwidth requirements

 To compete with GPON, IEEE started 802.3av 10GbE-PON task force in March 2006

Typical Applications' Bandwidth Requirements

Application	Bandwidth	QoS
Video (SDTV)	3.5 Mbps	Low loss, low jitter, constant bit rate
Video (HDTV)	8-15 Mbps	Same as above
Telecommuting	10 Mbps	Best effort, bursty
Video gaming	10 Mbps	Low loss, low jitter, bursty
Voice	64 kbps	Low loss, low latency, constant bit rate
Peer-to-Peer downloading	100 kbps – 100 Mbps	Best effort

100Mbps

- Download an 8GB DVD movie in 10 minutes
- Blue Ray: 25 to 200GB per disk

Changes in Network Traffic

- Traditional web surfing is user active, network passive
- Video is user passive, network active.

Statistical Multiplexing Gain

Web-surfing

- Poisson packet arrival distribution

Equivalent circuit rate

- The perceived circuit rate experienced by users
- 500 users with average usage of 40kb/s
- Each user perceives as if he/she has 30Mb/s - (500x40kb/s) = 10Mb/s

N.K. Shankaranarvanan, ATT, "User-perceived peformance ..." Proc. ICC, June 2001 N.J. Frigo, "Fiber to the home: niche market ..." OFC 2004 Tutorial

VoD Bandwidth Characteristics

Video streams characteristics

- High bandwidth usage
- Highly asymmetric
- Uniform and steady packet arrival rate
- Video consumptions are highly peaked during prime viewing hours or special events such as soccer games.
- Statistical multiplexing gain no longer valid

How Much Bandwidth is Needed?

- US Population Statistics (US Census Bureau <u>http://www.census.gov</u>)
 - Total Population: 300mil, Number of households:116mil
 - Average 2.6 people per household
- 24 ~ 45Mb/s bandwidth per household
 - Enough for everyone at home to watch a different HDTV at the same time (without counting background download jobs, which can take advantage of statistical multiplexing).
 - Good before another killer application emerges
- GPON will be able to support fully loaded VoD BW requirements and have room to grow ...
- EPON have barely enough BW when VoD takes off.
 - Shrink the service group, 1:8 ONUs per OLT
 - Develop 10GbE PON

IEEE 802.3av, started March 2006

	Downstream	Upstream
Symmetric	10Gb/s	10Gb/s
Asymmetric	10Gb/s	1Gb/s

Backward compatible with 1G E-PON

- WDM overlay
- Dual rate OLT receiver

Symmetric and Asymmetric 10Gb-EPON Operation

To be finalized by IEEE802.3av task force.

10Gb-EPON Optical Spectrum Management - 1

Dilemmas of 10GbE-PON

Split Ratio	1:16	1:32	1:64
Effective BW (Mbps)	545	272.5	137

 Higher splitting ratio desirable to achieve better cost sharing and more efficient use of available BW

- 1:64 or 1:128 (recall that each HH requires only ~45Mb/s BW)
- May need to extend coverage distance for bigger share group size (e.g. up to 60km)
- Further worsens the physical challenges for 10Gb/s PON signal transmission

10GbE-PON Transmission Challenges

Dispersion Effect (increases as square of bit-rate)

- EML (narrow modulated line width)
- EDC may be needed at ONU receiver

Power Budget Extension

 9.1dB more theoretical received power requirement compared to EPON (8B10B GbE vs. 6466B 10GbE coding)

Split Ratio	1:32	1:64	1:128
Loss (dB)	15	18	21
Fiber length	20km	40km	60km
Loss (dB)	4	8	12

- 15 to 27dB more power budget required from OLT to ONU
- Penalties (dispersion, fiber non-linearity)

Fiber non-linearity

- Limit power budgets

Technologies for 10Gb-EPON Transmission

• APD

 Improves sensitivity by 7~8dB

• EDC

- 2~3dB gain
- FEC
 - Improves power budget by 3~5dB

Average Power (dBm)

-25

-32

F. Chang, "10G EPON Optical Budget Considerations"

http://grouper.ieee.org/groups/802/3/10GEPON_study /public/july06/chang_1_0706.pdf

Technologies for 10Gb-EPON

SOA

- 15dB gain
- Operate at all λ
- Planner technology (mass manufacture)
- Compact size, (multichannel packaging available)
- Beneficial for burst data

Burst data

L. Spiekman, IEEE802.3av meeting, Nov, 2006, Dallas, Tx http://grouper.ieee.org/groups/802/3/av/public/2006_11/3av_0611_spiekman_1.pdf

SOA / EDFA in 10Gb EPON

SOA may be used as data modulator

Fiber Non-linear Effect (SRS)

1. S. Tsuji, "Issues for wavelength allocation," IEEE802.3av meeting, Sept. 2006 http://grouper.ieee.org/groups/802/3/av/public/2006_09/3av_0609_tsuji_1.pdf

2. S. Ten and M. Hajduczenia, "Raman-Induced power penalty in PONs using order approximation, IEEE802.3av meeting, Jan 2007,

http://grouper.ieee.org/groups/802/3/av/public/2007_01/3av_0701_ten_2.pdf

Fiber Non-linear Effect (SBS)

Limits transmitted power

S. Ten, "SBS degradation of 10Gb/s digital signal in EPON: experiment and model" IEEE 802.3av meeting, Jan 2007

http://grouper.ieee.org/groups/802/3/av/public/2007_01/3av_0701_ten_1.pdf

WDM-PON

PS PON advantages

- passive & future proof

Point-Point connections

- Privacy / Security
- Simultaneous Service Diversity

- Subscriber buys upgrades
- Expensive components
 - WDM mux-demux cost still high
 - accurate wavelength lasers required
 - temperature stability

Waveguide Grating Router

- Also called Arrayed Waveguide Grating (AWG), phase array or Dragone Router
- Fabricated on Silicon

WDM on WDM

Ref: lannone, et al., PTL 8, 930 (1996), Frigo, et al., OFC'97 PD24

Athermal AWG Devices

Y. Inoue et al., Electron. Lett., vol. 33, pp.1945-1946, 1997

Athermal AWG

Temperature stability of λ < 20 pm at 0 – 85 °C

A. Kaneko et al., Electron. Lett., vol. 36, pp.318-319, 2000.

Injection Locking of Upstream Laser

Courtesy: Novera Optics

Reflective SOA

Courtesy of ETRI and Korea Telecom

Planar Lightwave Circuit - ECL

OPV∕ISTA.

Courtesy of ETRI and Korea Telecom

WE-PON (WDM-E-PON)

~ 1000 users per feeder fiber (32 λ x 32 TDM)

WDM-PON used for metro backhauling

OPV/ISTA WDM is an efficient way to increase splitting ratio

Courtesy of ETRI and Korea Telecom

Conclusion

Demands for bandwidth continue to drive broadband optical access network development

- Digital and packetized video becomes the killer application
- Bandwidth usage pattern is changing, statistical multiplexing no longer holds for new broadband applications (VoD)

FTTx – a personal view:

- GPON delivers the right FTTH BW for the next a few years.
- EPON offers the initial cost advantage

FTTx development is good for economy

10GE-PON and WDM-PON developments will create new component industries

Don't let our lack of imaginations limit the development of broadband access networks

- FTTx research took 20 years to get to today's deployment stage
- Bandwidth is always good and will finds its applications to benefit human societies.

Question: Are there any other better ways to make a PON?

Thank you!

